溶解氧的介绍和测量原理

发布时间:17-02-27 14:33分类:技术文章 标签:溶解氧仪,溶解氧仪简介
日常见到的溶解氧测定仪是测定水中溶解氧的装置。溶解氧仪则是测量溶解在水溶液内的氧气的含量。溶解氧仪简明原理常见的溶解仪多采用隔膜电极作换能器,将溶氧浓度(实际上是氧分压)转换成电信号,再经放大、调整(包括盐度、温度补偿),由模数转换显示。溶氧仪实用的膜电极有两种类型:极谱型(Polarography)和原电池型(Galvanic
Cell)。极谱型(Polarography):电极中,由黄金(Au)环或铂(Pt)金环作阴极;银-氯化银(或汞-氯化亚汞)作阳极。电解液为氯化钾溶液。阴极外表面覆盖一层透氧薄膜。薄膜可采用聚四氟乙烯、聚氯乙烯、聚乙烯、硅橡胶等透气材料。阴阳两电极之间外加0.5~1.5伏的
  
极化电压。有的极化电压为0.7伏。当溶解氧透过薄膜到达黄金阴极表面,在电极上发生如下反应。阴极被还原:O2+2H2O+4e→4OHˉ同时,阳极被氧化:4Clˉ+4Ag-4e→4AgCl在正常情况下,上述还原-氧化反应产生的扩散电流i∞之值与溶氧浓度成正比。可用下式表示:i∞=nFA(Pm/L)Cs式中:i∞-稳定状态的扩散电流n-得失电子数F-法拉第常数(96500
库仑)A-阴极表面积(平方厘米)Pm-薄膜的渗透系数(厘米2/秒)L-薄膜的厚度(厘米)Cs-溶解氧浓度(ppm)当电极结构和薄膜确定之后,式中A、Pm、L、n等均为常数。令K=
nFA(Pm/L),则上式中:i∞=KCs。因此可见,只要测得扩散电流i∞,即可测得溶解氧浓度。为消除温度、盐度和气压因素影响,各型号产品采用各自技术进行补偿。原电池型(Galvanic
Cell):当外界氧分子透过薄膜进入电极内相到达阴极的三相界面时,产生下式反应。银阴极被还原:O2+2H2O+4e→4OHˉ同时,铅阳极被氧化:2Pb+2KOH+4OHˉ-4e→2KHPbO2+2H2O即:氧在银阴极上被还原为氢氧根离子,并同时向外电路获得电子;铅阳极被氢氧化钾溶液腐蚀,生成铅酸氢钾,同时向外电路输出电子。接通外电路之后,便有信号电流通过,其值与溶氧浓度成正比。环境影响适当的溶氧对好的水质是必不可少的,所有的生命形态都需要氧。天然的溪水净化过程要求有恰当的氧含量供给有氧生命形态。如水中的氧含量低于5.0mg/L,水生物生存*有困难,浓度越低越困难。如氧含量低于1-2mg/L并持续几小时将导致水生物大批死亡。应用场合溶氧电极可用来测量用来对氧含量会影响反应速度、流程效率或环境的流程进行监控:如水产养殖、生物反应、环境测试(湖、溪、海洋)、水/废水处理、葡萄酒生产。温度补偿对标准溶氧测量说,温度影响到氧的溶解度和扩散速度,因此必须进行温度补偿。盐度修正溶解盐的存在限制了可溶解于水的氧的含量。氧的浓度和分压之间的关系随着每份样品溶液盐度的不同而变化,因此多数的仪表制造商提供人工调节盐度来修正由离子浓度不同而造成的变化。生化需氧量(BOD)BOD
测试一般用于污水处理厂,水处理厂需要知道微生物分解有机物质时从水中消耗的氧的量,这点很重要。该测试可使水处理厂确定水处理的效力或仍然存在的污染量。通过测量特定培养期起始及终止时溶解于样品内的氧的含量可以确定废水、排出液和污水的相对需氧量。可通过测出时间1的溶氧(T1),减去时间2的溶氧(T2);将该数值乘以*终样品体积(VF)并除以*初样品体积(V)来计算出BOD。
  BOD (mg/L) = (T1 –
T2)VF/V故障处理使用极谱式电极时,校正或测量前要预热至少15-30分钟。为确保膜的电解液内没有气泡,ASI膜帽在设计上要求在装上膜头时要排除掉所有液腔内的空气。膜表面上不能留有任何气泡,否则它会将气泡当作氧饱和样品进行读数。即使使用的是带有自动温度补偿的仪表,也要在接近样品溶液的温度下校正电极。电极应在空气中校正,以空气作为*的饱和溶解氧标准点。

北京恒奥德仪器厂家打折溶解氧测试仪
在污水处理过程中,通过增加污水中的氧含量使污染物通过活化泥浆被分解出来,达到污水净化的目的,测量氧含量有助于确定最佳的净化方法和最经济的曝气池配置。在生物发酵过程中氧含量的测量数据可对工艺过程进行指导,如判断发酵过程的临界氧浓度、发酵罐的供氧能力以及菌体的活性和菌体的生长量等,并根据发酵时的供氧和需氧变化来指导补料操作。原理溶解度取决于温度、压力和水中溶解的盐一、溶解氧分析仪测量原理氧在水中的溶解度取决于温度、压力和水中溶解的盐。溶解氧分析仪传感部分是由金电极和银电极及氯化钾或氢氧化钾电解液组成,氧通过膜扩散进入电解液与金电极和银电极构成测量回路。当给溶解氧分析仪电极加上0.6~
0.8V
的极化电压时,氧通过膜扩散,阴极释放电子,阳极接受电子,产生电流,整个反应过程为:阳极
Ag+Cl→AgCl+2e- 阴极 O2+2H2O+4e→4OH-
根据法拉第定律:流过溶解氧分析仪电极的电流和氧分压成正比,在温度不变的情况下电流和氧浓度之间呈线性关系。表示方法二、溶解氧含量的表示方法溶解氧含量有3
种不同的表示方法:氧分压;百分饱和度;氧浓度(mg/L 或10-6),这3
种方法本质上没什么不同。⑴分压表示法:氧分压表示法是最基本和最本质的表示法。根据Henry
定律可得,P=(Po2+P H2O)×0.209,其中,P 为总压;Po2 为氧分压;P H2O
为水蒸气分压;0.209
为空气中氧的含量。⑵百分饱和度表示法:由于曝气发酵十分复杂,氧分压不能计算得到,在此情况下用百分饱和度的表示法是最合适的。例如将标定时溶解氧定为100%,零氧时为0%,则反应过程中的溶解氧含量即为标定时的百分数。⑶氧浓度表示法:根据Henry
定律可知氧浓度与其分压成正比,即:C=Po2 ×a,其中C 为氧浓度;Po2 为氧分压;a
为溶解度系数(mg/mmHg·L)。溶解度系数a
不仅与温度有关,还与溶液的成分有关。对于温度恒定的水溶液,a
为常数,则可测量氧的浓度。氧浓度表示法在发酵工业中不常用,但在污水处理、生活饮用水等过程中都用氧浓度来表示。影响溶解氧测量的因素三、影响溶解氧测量的因素氧的溶解度取决于温度、压力和水中溶解的盐,另外氧通过溶液扩散比通过膜扩散快,如流速太慢会产生干扰。⒈
温度的影响由于温度变化,膜的扩散系数和氧的溶解度都将发生变化,直接影响到溶氧电极电流输出,常采用热敏电阻来消除温度的影响。温度上升,扩散系数增加,溶解度反而减小。温度对溶解度系数a
的影响可以根据Henry
定律来估算,温度对膜扩散系数β可以通过阿仑尼乌斯定律来估算。⑴氧的溶解度系数:由于溶解度系数a
不仅受温度的影响,而且受溶液的成分的影响。在相同氧分压下,不同组分的实际氧浓度也可能不同。根据亨利定律可知氧浓度与其分压成正比,对于稀溶液,温度变化溶解度系数a
的变化约为2%/ ℃。⑵膜的扩散系数:根据阿仑尼乌斯定律,溶解度系数β与温度T
的关系为:C=KPo2·exp(-β/T),其中假定K、Po2
为常数,则可以计算出β在25℃时为2.3%/ ℃。当溶解度系数a
计算出来后,可通过仪表指示和化验分析值对比计算出膜的扩散系数,膜的扩散系数在25℃时为1.5%/℃。⒉
大气压的影响根据Henry
定律,气体的溶解度与其分压成正比。氧分压与该地区的海拔高度有关,高原地区和平原地区的差可达20%,使用前必须根据当地大气压进行补偿。有些仪表内部配有气压表,在标定时可自动进行校正;有些仪表未配置气压表,在标定时要根据当地气象站提供的数据进行设置,如果数据有误,将导致较大的测量误差。⒊
溶液中含盐量盐水中的溶解氧明显低于自来水中的溶解氧,为了准确测量,必须考虑含盐量对溶解氧的影响。在温度不变的情况下,盐含量每增加100mg/L,溶解氧降低约1%。如果仪表在标定时使用的溶液的含盐量低,而实际测量的溶液的含盐量高,也会导致误差。在实际使用中必须对测量介质的含盐量进行分析,以便准确测量及正确补偿。⒋
样品的流速氧通过膜扩散比通过样品进行扩散要慢,必须保证电极膜与溶液完全接触。对于流通式检测方式,溶液中的氧会向流通池内扩散,使靠近膜的溶液中的氧损失,产生扩散干扰,影响测量。为了测量准确,应增加流过膜的溶液的流量来补偿扩散失去的氧,样品的最小流速为0.3m/s。注意的问题四、注意的问题对溶解氧分析仪来说,只要选型、设置、维护得当,一般均能满足工艺的测量要求。溶解氧分析仪的使用不好的主要问题出在:使用维护不正确;电极内部泄露造成温度补偿不正常;电极输入阻抗降低等。检测原理概述随着当今世界工业、农业的迅猛发展,大量的工业废水、农田排水向江河湖海排放,同时,中国城市生活污水大约有80%未经处理直接排放,小城镇及广大农村生活污水大多处于无序排放状态[1],使得许多地方的水质日益恶化,水污染和水资源短缺日益严重,所以迫切需要对污水进行及时监控和有效处理。其中,水中溶解氧含量是进行水质监测时的一项重要指标。溶解氧(Dissolved
Oxygen)是指溶解于水中分子状态的氧,即水中的O2,用DO表示。溶解氧是水生生物生存不可缺少的条件。溶解氧的一个来源是水中溶解氧未饱和时,大气中的氧气向水体渗入;另一个来源是水中植物通过光合作用释放出的氧。溶解氧随着温度、气压、盐分的变化而变化,一般说来,温度越高,溶解的盐分越大,水中的溶解氧越低;气压越高,水中的溶解氧越高。溶解氧除了被通常水中硫化物、亚硝酸根、亚铁离子等还原性物质所消耗外,也被水中微生物的呼吸作用以及水中有机物质被好氧微生物的氧化分解所消耗。所以说溶解氧是水体的资本,是水体自净能力的表示。天然水中溶解氧近于饱和值,藻类繁殖旺盛时,溶解氧含量下降。水体受有机物及还原性物质污染可使溶解氧降低,对于水产养殖业来说,水体溶解氧对水中生物如鱼类的生存有着至关重要的影响,当溶解氧低于4mg/L时,就会引起鱼类窒息死亡,对于人类来说,健康的饮用水中溶解氧含量不得小于6mg/L。当溶解氧消耗速率大于氧气向水体中溶入的速率时,溶解氧的含量可趋近于0,此时厌氧菌得以繁殖,使水体恶化,所以溶解氧大小能够反映出水体受到的污染,特别是有机物污染的程度,它是水体污染程度的重要指标,也是衡量水质的综合指标。因此,水体溶解氧含量的测量,对于环境监测以及水产养殖业的发展都具有重要意义。

发布时间:14-08-01 09:34分类:技术文章 标签:溶解氧
溶解在水中的分子态氧称为溶解氧。天然水的溶解氧含量取决于水体与大气中氧的平衡。一定的水中溶解氧的含量与空气中氧的分压、水温、水的深度、水中各种盐类和藻类的含量以及光照强度等多种条件有关。清洁地表水溶解氧一般接近饱和。藻类的生长可能导致溶解氧的过饱和,而水体受有机、无机还原性物质污染时溶解氧降低。氧在水中的溶解度不大,并且是一个动态值,但它的作用却举足轻重。渔业上,当水中溶解氧的含量低于3-4mg/L时,许多鱼类都将因缺氧而死亡。工业上,某些生产过程中需要测定溶液或反应物中的溶解氧含量。一些科研和实验也需要精确测定水中的溶解氧含量。此外,溶解氧在其他水产养殖、农业、废水生化处理、水体自净、医学等领域也是一个重要的影响因素。水中溶解氧的含量除与上述因素有关外,也是水体受污染程度和生态环境好坏的重要指标之一,它与环保上经常检测的数据BOD、COD密切相关。水被严重污染时,溶解氧含量将大大减少,近年沿海频繁出现的赤潮现象*是一例。
水中的溶解氧仍以分子态形式存在,而溶解氧的测定,从方法上来说一般分为以下两类:化学法和仪器法。化学法主要为滴定法以及目视比色法,而仪器法则包括光学分析法、色谱分析法和电化学分析法等。
化学法测定溶解氧,主要是使溶解氧与各种还原性物质发生化学反应,然后通过所用还原物质的量而求出溶解氧的含量。化学法须经过溶解氧的固定、滴定、指示剂的选择及干扰的排除,故操作较繁琐,时间较长。当然,借助于设备上的改进,它的结果仍是*准确的,一般在结果对照、标准分析中被采用。许多化学法都是在碘量法的基础上加以改进而提出的,一般都属于容量法。比色法是利用氧浓度与显色浓度成正比的关系而大致判断出氧浓度。
仪器法*是利用各种仪器测定溶解氧在化学反应过程中或其生成物的各种物理信号,然后将这些信号转变成电信号,或者直接测定溶解氧在电极反应中的电信号,电信号再经放大处理或数模转换,*后才将结果输出到仪器表头,从而可以直接测出溶解氧的含量。同样的,仪器法也必须考虑到各种干扰的产生及排除,以及仪器的灵敏度、稳定性和选择性。仪器法在近几十年来的发展中已在上述各方面取得了很大的突破,使之测定溶解氧早已成为可能,并早有各种商品问世。
溶解氧电极原理
溶氧电极用一薄膜将铂阴极,银阳极,以及电解质与外界隔开,一般情况下阴极几乎是和这层膜直接接触的。氧以和其分压成正比的比率透过膜扩散,氧分压越大,透过膜的氧*越多。当溶解氧不断地透过膜渗入腔体,在阴极上还原而产生电流,此电流在仪表上显示出来。由于此电流和溶氧浓度直接成正比,因此校正仪表只需将测得的电流转换为浓度单位即可(溶氧浓度通常用mg/L(每升水的溶氧量)或ppm(百万分之几)。
溶解氧电极有两种类型:极谱式和原电池式。极谱式电极需仪表输入一电压对电极进行极化。由于外加电压可能要15分钟才能稳定,因此极谱式电极使用前通常要进行预热确保电极能妥当极化。原电池式的两个极由两种不同的能自发极化产生电压的金属构成。由于原电池式的电压是自发产生而不是外界提供的,因此原电池式电极使用时无需极谱式电极极化所需的“预热”。
使用极谱式电极时,校正或测量前要预热至少15-30分钟。为确保膜的电解液内没有气泡,ASI膜帽在设计上要求在装上膜头时要排除掉所有液腔内的空气。膜表面上不能留有任何气泡,否则它会将气泡当作氧饱和样品进行读数。即使使用的是带有自动温度补偿的仪表,也要在接近样品溶液的温度下校正电极。电极应在空气中校正,以空气作为100%的饱和溶解氧标准点。由于电极对氧的消耗,探头表面氧的浓度会瞬间降低,因此测量时要对溶液进行搅拌,这很重要。
溶氧仪的维护 1、日常维护
溶解氧仪的日常维护主要包括定期对电极进行清洗、校验、再生。
(1)1~2周应清洗一次电极,如果膜片上有污染物,会引起测量误差。清洗时应小心,注意不要损坏膜片。将电极放入清水中涮洗,如污物不能洗去,用软布或棉布小心擦洗。
(2)2~3月应重新校验一次零点和量程。
(3)电极的再生大约1年左右进行一次。当测量范围调整不过来,*需要对溶解氧电极再生。电极再生包括更换内部电解液、更换膜片、清洗银电极。如果观察银电极有氧化现象,可用细砂纸抛光。
(4)在使用中如发现电极泄露,*必须更换电解液。 2、溶解氧仪的标定
溶解氧仪的标定方法一般可采用标准液标定或现场取样标定。
(1)标准溶液标定法:标准溶液标定一般采用两点标定,即零点标定和量程标定。零点标定溶液可采用2%的Na2SO3溶液。量程标定溶液可根据仪表测量量程选择4M的KCl溶液(2mg/L);50%的甲醇溶液(21.9mg/L)。
(2)现场取样标定法(Winkler法):在实际使用中,多采用Winkler方法对溶解氧分析仪进行现场标定。使用该方法时存在两种情况:取样时仪表读数为M1,化验分析值为A,对仪表进行标定时仪表读数仍为M1,这时只须调整仪表读数等于A即可;取样时仪表读数为M1,化验分析值为A,对仪表进行标定时仪表读数改变为M2,这时*不能将调整仪表读数等于A,而应将仪表读数调整为1MA×M2。
3、使用中应注意的问题
由于溶解氧电极信号阻抗较高(约20MΩ),溶解氧电极与转换器之间距离*大为50m;溶解氧电极不用时也应处于工作状态,可接在溶解氧转换器上。久置或重新再生(更换电解液或膜)的电极,在使用前应置于无氧环境极化1~2h;由于温度变化对电极膜的扩散和氧溶解度有较大影响,标定时需较长时间(约10min),以使温补电阻达到平衡;氧分压与该地区的海拔高度有关,仪表在使用前必须根据当地大气压进行补偿;测量溶液的含盐量高时,仪表标定时应使用含盐量相当的溶液;对于流通式测量方式,要求流过电极的*小流速为0.3m/s。

发表评论

电子邮件地址不会被公开。 必填项已用*标注

相关文章

网站地图xml地图