高斯计热卖中

发布时间:17-02-20 14:11分类:技术文章 标签:涂层测厚仪,测厚仪
在我国涂层测厚仪应用还是很广泛的,随着科技的进步,涂层测厚仪也在不断的改进,技术越来越*进,其测量误差小,可靠性越来越高,无论在制造业还是金属加工业,它都成为了一个必不可少的检测仪器。
涂层测厚仪的*新技术目前,国内国外不管是出名的品牌还是一般的生产厂家,其测厚仪的操作方法均需要如下步骤:1调零,即在特定的零板上调零,或在需要测量的原基材上调零;2根据测量产品的不同测量范围,用适当的测试片调值,以减少测量上的误差。这种方法一般情况下,仪器新购使用时还是没有什么问题的,只是比较繁琐一点。但当探头使用一段时间后,问题*出来了。操作中我们的仪器测量精度大大减小了。很难把握。原因在于产品的原理,这是一个致命的缺陷,即探头是使用一根磁铁绕线圈。通上电流后产生磁场,这个磁场是不规则的。还好,现在有*新型的涂层测厚仪,它采用的是*新的磁感技术。也*是我们知道的霍尔效应,霍尔于1879年发现的。通过研究霍尔电压与工作电流的关系,测量电磁铁磁场、磁导率、研究霍尔电压与磁场的关系,霍尔发现这个电位差UH与电流强度I
H成正比,与磁感应强度B成正比,与薄片的厚度d成反比。这个磁场是*变成规则的。该原理运用在涂层测厚仪上面*无需再调测试片了。特别是测量圆弧的或凹面的产品时,使用更为简单和方便了。
有关涂层检测仪的讲述不仅仅只有这些,当然还有它的选型,特点,原理等,

发布时间:17-03-17 11:39分类:技术文章 标签:涂层测厚仪,百科
摘要:涂层测厚仪可无损地测量磁性金属基体(如钢、铁、合金和硬磁性钢等)上非磁性涂层的厚度(如铝、铬、铜、珐琅、橡胶、油漆等)
及非磁性金属基体(如铜、铝、锌、锡等)上非导电覆层的厚度(如:珐琅、橡胶、油漆、塑料等)。涂镀层测厚仪具有测量误差小、可靠性高、稳定性好、操作简便等特点,是控制和保证产品质量必不可少的检测仪器,广泛地应用在制造业、金属加工业、化工业、商检等检测领域。
铁基/非铁基涂层测厚仪用磁性传感器测量钢、铁等铁磁质金属基体上的非铁磁性涂层、镀层,例如:漆、粉末、塑料、橡
胶、合成材料、磷化层、铬、锌、铅、铝、锡、镉、瓷、珐琅、氧化层等。用涡流传感器测量铜、铝、锌、锡等基体上的珐琅、橡胶、油漆、塑料层等。广泛用于制
造业、金属加工业、化工业、商检等检测领域。涂镀层测厚仪根据测量原理一般有以下五种类型:OU3100涂层测厚仪(2张)磁性测厚法
  适用导磁材料上的非导磁层厚度测量.导磁材料一般为:钢铁银镍.此种方法测量精度高涡流测厚法
  适用导电金属上的非导电层厚度测量.此种方法较磁性测厚法精度低超声波测厚法
  目前国内还没有用此种方法测量涂镀层厚度的,国外个别厂家有这样的仪器,适用多层涂镀层厚度的测量或则是以上两种方法都无法测量的场合.但一般价格昂贵测量精度也不高.电解测厚法
  此方法有别于以上三种,不属于无损检测,需要破坏涂镀层.一般精度也不高.测量起来较其他几种麻烦放射测厚法
  此种仪器价格非常昂贵(一般在10万RMB以上),适用于一些特殊场合.选型
  用户可以根据测量的需要选用不同的测厚仪,磁性测厚仪和涡流测厚仪一般测量的厚度适用0-5毫米,这类仪器又分探头与主机一体型,探头与主机分离型,前者操作便捷,后者适用于测非平面的外形。更厚的致密材质材料要用超声波测厚仪来测,测量的厚度可以达到0.7-250毫米。电解法测厚仪适合测量很细的线上面电镀的金,银等金属的厚度。两用涂层测厚仪
  仪器由德国生产,集合了磁性测厚仪和涡流测厚仪两种仪器的功能,可用于测量铁及非铁金属基体上涂层的厚度。如:  *
钢铁上的铜、铬、锌等电镀 层或油漆、涂料、搪瓷等涂层厚度。  *
铝、镁材料上阳极氧化膜的厚度。  *
铜、铝、镁、锌等非铁金属材料上的涂层厚度。  *
铝、铜、金等箔带材及纸张、塑料膜的厚度。  *
各种钢铁及非铁金属材料上热喷涂层的厚度。  仪器符合*标准GB/T4956和GB/T4957,可用于生产检验、验收检验及质量监督检验。仪器特点
采用双功能内置式探头,自动识别铁基或非铁基体材料,并选择相应的测量方式进行精确测量。符合人体工程学设计的双显示屏结构,可以在任何测量位置读取测量数据。采用手机菜单式功能选择方式,操作十分简便。可设定上下限值,测量结果超出或符合上下限数值时,仪器会发出相应的声音或闪烁灯提示。稳定性极高,通常不必校正便可长期使用。技术规格
量 程: 0~2000μm ,电 源: 两节5号电池标准配置
常规涂层测厚仪的原理对材料表面保护、装饰形成的覆盖层,如涂层、镀层、敷层、贴层、化学生成膜等,在有关*和国际标准中称为覆层(coating)。覆层厚度测量已成为加工工业、表面工程质量检测的重要一环,是产品达到优等质量标准的必备手段。为使产品国际化,我国出口商品和涉外项目中,对覆层厚度有了明确的要求。覆层厚度的测量方法主要有:楔切法,光截法,电解法,厚度差测量法,称重法,X射线荧光法,β射线反向散射法,电容法、磁性测量法及涡流测量法等。这些方法中前五种是有损检测,测量手段繁琐,速度慢,多适用于抽样检验。X射线和β射线法是无接触无损测量,但装置复杂昂贵,测量范围较小。因有放射源,使用者必须遵守射线防护规范。X射线法可测极薄镀层、双镀层、合金镀层。β射线法适合镀层和底材原子序号大于3的镀层测量。电容法仅在薄导电体的绝缘覆层测厚时采用。随着技术的日益进步,特别是近年来引入微机技术后,采用磁性法和涡流法的测厚仪向微型、智能、多功能、高精度、实用
化的方向进了一步。测量的分辨率已达0.1微米,精度可达到1%,有了大幅度的提高。它适用范围广,量程宽、操作简便且价廉,是工业和科研使用*广泛的测
厚仪器。采用无损方法既不破坏覆层也不破坏基材,检测速度快,能使大量的检测工作经济地进行。原理
磁吸力测量原理*磁铁(测头)与导磁钢材之间的吸力大小与处于这两者之间的距离成一定比例关系,这个距离*是覆层的厚度。利用这一原理制成测厚仪,
只要覆层与基材的导磁率之差足够大,*可进行测量。鉴于大多数工业品采用结构钢和热轧冷轧钢板冲压成型,所以磁性测厚仪应用*广。测厚仪基本结构由磁钢,
接力簧,标尺及自停机构组成。磁钢与被测物吸合后,将测量簧在其后逐渐拉长,拉力逐渐增大。当拉力刚好大于吸力,磁钢脱离的一瞬间记录下拉力的大小即可获
得覆层厚度。新型的产品可以自动完成这一记录过程。不同的型号有不同的量程与适用场合。这种仪器的特点是操作简便、坚固耐用、不用电源,测量前无须校准,价格也较低,很适合车间做现场质量控制。磁感应测量原理采用磁感应原理时,利用从测头经过非铁磁覆层而流入铁磁基体的磁通的大小,来测定覆层厚度。也可以测定与之对应的磁阻的大小,来表示其覆层厚度。覆层越厚,
则磁阻越大,磁通越小。利用磁感应原理的测厚仪,原则上可以有导磁基体上的非导磁覆层厚度。一般要求基材导磁率在500以上。如果覆层材料也有磁性,则要
求与基材的导磁率之差足够大(如钢上镀镍)。当软芯上绕着线圈的测头放在被测样本上时,仪器自动输出测试电流或测试信号。早期的产品采用指针式表头,测量
感应电动势的大小,仪器将该信号放大后来指示覆层厚度。近年来的电路设计引入稳频、锁相、温度补偿等地新技术,利用磁阻来调制测量信号。还采用*设计的
集成电路,引入微机,使测量精度和重现性有了大幅度的提高(几乎达一个数量级)。现代的磁感应测厚仪,分辨率达到0.1um,允许误差达1%,量程达
10mm。磁性原理测厚仪可应用来精确测量钢铁表面的油漆层,瓷、搪瓷防护层,塑料、橡胶覆层,包括镍铬在内的各种有色金属电镀层,以及化工石油待业的各种防腐涂层。电涡流测量原理高频交流信号在测头线圈中产生电磁场,测头靠近导体时,*在其中形成涡流。测头离导电基体愈近,则涡流愈大,反射阻抗也愈大。这个反馈作用量表征了测头与导
电基体之间距离的大小,也*是导电基体上非导电覆层厚度的大小。由于这类测头专门测量非铁磁金属基材上的覆层厚度,所以通常称之为非磁性测头。非磁性测头
采用高频材料做线圈铁芯,例如铂镍合金或其它新材料。与磁感应原理比较,主要区别是测头不同,信号的频率不同,信号的大小、标度关系不同。与磁感应测厚仪一样,涡流测厚仪也达到了分辨率0.1um,允许误差1%,量程10mm的高水平。采用电涡流原理的测厚仪,原则上对所有导电体上的非导电体覆层均可测量,如航天航空器表面、车辆、家电、铝合金门窗
及其它铝制品表面的漆,塑料涂层及阳极氧化膜。覆层材料有一定的导电性,通过校准同样也可测量,但要求两者的导电率之比至少相差3-5倍(如铜上镀铬)。
虽然钢铁基体亦为导电体,但这类任务还是采用磁性原理测量较为合适激光测厚*近英国真尚有公司研发出了新的非接触式测量方法ZTMS08激光测厚仪,可以实现对涂层的非接触式测量,避免对涂层造成形变引起误差。激光测厚仪的测量原理
使用两个激光传感器安装在被测物(纸张)上下方,将传感器固定在稳定的支架上,确保两个传感器的激光能对在同一点
上。随着被测物的移动传感器*开始对其表面进行采样,分别测量出目标上下表面分别与上下成对的激光位移传感器距离,测量值通过串口传输到计算机,再通过我
们在计算机上的测厚软件进行处理,得到目标的厚度值。ZTMS08激光测厚仪的出现,大大提高了纸张等片材涂层测量的精度,尤其是在自动化生产线上,得到广泛应用。特点
具有两种测量方式:连续测量方式(CONTINUE)和单次测量方式(SINGLE);具有两种工作方式:直接方式(DIRECT)和成组方式(APPL);设有五个统计量:平均值(MEAN)、*大值(MAX)、*小值(MIN)、测试次数(NO.)、标准偏差(S.DEV)可进行零点校准和二点校准,并可用基本校准法对测头的系统误差进行修正;具有存贮功能:可存贮300个测量值;具有删除功能:对测量中出现的单个可疑数据进行删除,也可删除涂层测厚仪存贮区内的所有数据,以便进行新的测量;可设置限界:对限界外的测量值能自动报警;具有与PC机通讯的功能:可将测量值、统计值传输至PC机,以便涂层测厚仪对数据进行进一步处理;具有电源欠压指示功能;操作过程有蜂鸣声提示;具有错误提示功能;具有自动关机功能。影响因素影响因素的有关说明a
基体金属磁性质磁性法测厚受基体金属磁性变化的影响(在实际应用中,低碳钢磁性的变化可以认为是轻微的),为了避免热处理和冷加工因素的影响,应使用与试件基体金属具有相同性质的标准片对仪器进行校准;亦可用待涂覆试件进行校准。b
基体金属电性质基体金属的电导率对测量有影响,而基体金属的电导率与其材料成分及热处理方法有关。使用与试件基体金属具有相同性质的标准片对仪器进行校准。c
基体金属厚度每一种仪器都有一个基体金属的临界厚度。大于这个厚度,测量*不受基体金属厚度的影响。本仪器的临界厚度值见附表1。d
边缘效应本仪器对试件表面形状的陡变敏感。因此在靠近试件边缘或内转角处进行测量是不可靠的。e
曲率试件的曲率对测量有影响。这种影响总是随着曲率半径的减少明显地增大。因此,在弯曲试件的表面上测量是不可靠的。f
试件的变形测头会使软覆盖层试件变形,因此在这些试件上测出可靠的数据。g
表面粗糙度基体金属和覆盖层的表面粗糙程度对测量有影响。粗糙程度增大,影响增大。粗糙表面会引起系统误差和偶然误差,每次测
量时,在不同位置上应增加测量的次数,以克服这种偶然误差。如果基体金属粗糙,还必须在未涂覆的粗糙度相类似的基体金属试件上取几个位置校对仪器的零点;
或用对基体金属没有腐蚀的溶液溶解除去覆盖层后,再校对仪器的零点。g
磁场周围各种电气设备所产生的强磁场,会严重地干扰磁性法测厚工作。h
附着物质本仪器对那些妨碍测头与覆盖层表面紧密接触的附着物质敏感,因此,必须清除附着物质,以保证仪器测头和被测试件表面直接接触。i
测头压力测头置于试件上所施加的压力大小会影响测量的读数,因此,要保持压力恒定。j
测头的取向测头的放置方式对测量有影响。在测量中,应当使测头与试样表面保持垂直。应当遵守的规定a
基体金属特性对于磁性方法,标准片的基体金属的磁性和表面粗糙度,应当与试件基体金属的磁性和表面粗糙度相似。对于涡流方法,标准片基体金属的电性质,应当与试件基体金属的电性质相似。b
基体金属厚度检查基体金属厚度是否超过临界厚度,如果没有,可采用3.3中的某种方法进行校准。c
边缘效应不应在紧靠试件的突变处,如边缘、洞和内转角等处进行测量。d
曲率不应在试件的弯曲表面上测量。e
读数次数通常由于仪器的每次读数并不完全相同,因此必须在每一测量面积内取几个读数。覆盖层厚度的局部差异,也要求在任一给定的面积内进行多次测量,表面粗造时更应如此。f
表面清洁度测量前,应清除表面上的任何附着物质,如尘土、油脂及腐蚀产物等,但不要除去任何覆盖层物质区别
F代表ferrous 铁磁性基体,F型的涂层测厚仪采用电磁感应原理,
来测量钢、铁等铁磁质金属基体上的非铁磁性涂层、镀层,例如:漆、粉末、塑料、橡胶、合成材料、磷化层、铬、锌、铅、铝、锡、镉、瓷、珐琅、氧化层等。N代表Non-
ferrous非铁磁性基体,N型的涂层测厚仪采用电涡流原理;来测量用涡流传感器测量铜、铝、锌、锡等基体上的珐琅、橡胶、油漆、塑料层等。FN型的涂层测厚仪既采用电磁感应原理,又采用采用电涡流原理,是F型和N型的二合一型涂层测厚仪。用途见上。有一个F探头的磁性测厚仪;FN是指带有两个探头的磁性和涡流两用型二合一涂层测厚仪。产品型号:(分体化传感器涂层测厚仪)功能:
测量导磁物体上的非导磁涂层和非磁性金属基体上的非导电覆盖层的厚度测量方法:F
磁感应 NF 涡流测量范围:0-1250um/0-50mil (标准量程)*小曲面:F: 凸 1.5mm/
凹 25mm N: 凸 3mm/ 凹
50mm分辨率:0.1/1*小测量面积:6mm*薄基底:0.3mm自动关机使用环境:温度:0-40℃
湿度:10-90%RH准确度:±(1-3%n)或±2um公制/英制:可选择电源:4节7号电池电池电压指示:低电压提示外形尺寸:126X65X27mm重量:81g(不含电池)可选附件:(点击链接)1.RS-232
或联机线及软件2.可定制量程(大量程传感器)可选:0-200um to
18000um应用:用磁性传感器测量钢、铁等铁磁质金属基体上的非铁磁性涂层、镀层,例如:漆、粉末、塑料、橡胶、合成材料、磷
化层、铬、锌、铅、铝、锡、镉、瓷、珐琅、氧化层等。用涡流传感器测量铜、铝、锌、锡等基体上的珐琅、橡胶、油漆、塑料层等。广泛用于制造业、金属加工
业、化工业、商检等检测领域。影响因数
涂层测厚仪在测量物体时,除测量方法外,还会有其他因数会导致测量结果有所偏差,具体影响因数请看下表.
测量方式法 磁性测量 涡流测量 基体金属磁性质 * 基体金属电性质 *
边缘效应 * * 曲率 * * 试件粗糙度 * * 磁场 * 附着物质 * *
测头压力 * * 测头取向 * * 基体金属厚度 * * 试件的形状 * *
涂层测仪除了可以测量磁性金属基体和非磁性基体上的涂层,亦可以测量金属电镀的镀层测厚仪,因此,涂层测厚仪,通常也称为涂镀层测厚仪.检定规程标准:  *标准GB/T4956-2003《磁性基体上非磁性覆盖层厚度测量磁性法》  国际标准ISO
2178-1982检定规程:  JJG818-2005
《磁性、电涡流式覆层厚度测量仪》  非磁性  磁性金属只有三类  1.
钢铁  2.
镍金属  3.部分不锈钢(马氏体或铁素体型:如404B,430、420、410等)除了上述三种金属外的其他金属均为非磁性金属,如铜、锡、铅、及奥氏体型不锈钢(如404B,430、420、410)磁性与非磁性
人们常以为磁铁吸附不锈钢材,验证其优劣和真伪,不吸无磁,认为是好的,货真价实;吸者有磁性,则认为是冒牌假货。其实,这是一种极其片面的、不切实的错误的辨别方法。不锈钢的种类繁多,常温下按组织结构可分为几类:  1.奥氏体型:如304、321、316、310等;
是无磁或弱磁性  2.马氏体或铁素体型:如404B,430、420、410等;是有磁性的。通常用作装饰管板的不锈钢多数是奥氏体型的304材质,一般来讲是无磁或弱磁的,但因冶炼造成化学成分波动或加工状态不同也可能出现磁性,但这不能认为是冒牌或不合格,这是什么原因呢?上面提到奥氏体是无磁或弱磁性,而马氏体或铁素体是带磁性的,由于冶炼时成分偏析或热处理不当,会造成奥氏体304不锈钢中少量马氏体或铁素体组织。这样,304不锈钢中*会带有微弱的磁性。另外,304不锈钢经过冷加工,组织结构也会向马氏体转化,冷加工变形度越大,马氏体转化越多,钢的磁性也越大。如
同一批号的钢带,生产Φ76管,无明显磁感,生产Φ9.5管。因泠弯变形较大磁感*明显一些,生产方矩形管因变形量比圆管大,特别是折角部分,变形更激烈
磁性更明显。要想完全消除上述原因造成的304钢的磁性,可通过高温固溶处理开恢复稳定奥氏体组织,从而消去磁性。特别要提出的是,因上面原因造成的304不锈钢的磁性,与其他材质的不锈钢,如430、碳钢的磁性完全不是同一级别的,也*是说304钢的磁性始终显示的是弱磁性。这*告诉我们,如果不锈钢带弱磁性或完全不带磁性,应判别为304或316材质;如果与碳钢的磁性一样,显示出强磁性,因判别为不是304材*新技术
目前,国内国外不管是出名的品牌还是一般的生产厂家,其测厚仪的操作方法均需要如下步骤:1.调零,即在特定的零板上调零,或在需要测量的原基材上调零;2.根据测量产品的不同测量范围,用适当的测试片调值,以减少测量上的误差。
这种方法一般情况下,仪器新购使用时还是没有什么问题的,只是比较繁琐一点。
但当探头使用一段时间后,问题*出来了。操作中我们的仪器测量精度大大减小了。
很难把握。原因在于产品的原理,这是一个致命的缺陷,即探头是使用一根磁铁绕线圈。
通上电流后产生磁场,这个磁场是不规则的。
还好,现在有*新型的涂层测厚仪,它采用的是*新的磁感技术。也*是我们知道的
霍尔效应,
霍尔于1879年发现的。通过研究霍尔电压与工作电流的关系,测量电磁铁磁场、磁导率、研究霍尔电压与磁场的关系
, 霍尔发现这个电位差 UH与电流强度 I H 成正比,与磁感应强度 B
成正比,与薄片的厚度 d 成反比。
这个磁场是*变成规则的。该原理运用在涂层测厚仪上面*无需再调测试片了。特别是测量圆弧的或凹面的产品时,使用更为简单和方便了。EPk涂层测厚仪和电火花检测仪
MikroTest系列涂层测厚仪 一、
MikroTest涂层测厚仪产品名录麦考特测厚仪根据量程大小可分为G6,F6,G7,F7,S3,S5,S10和S20以及笔式测厚仪等各种不同规格
的测厚仪,*小的测量范围是0-100微米,*大的是7.5-20毫米;又根据表现形式分为圆盘指针式的和数字显示的(如新型的G7,F7等);还根据外
观的不同分为香蕉形的(俗称)和笔式测厚仪,特别要注意的是,EPK还有二种特殊规格的麦考特测厚仪:即测量铜铝塑料基底上镀镍的Ni50,Ni100和
测量铁基底上镀镍的NiFe50。二、
MikroTest涂层测厚仪测量原理及应用所有MikroTest涂层测厚仪都是依据磁吸力的测量原理进行设计生产的。测量磁钢与磁性基体间的磁吸力与盘状弹簧的弹力平衡,盘状弹簧的旋转弹力的大小与涂层厚度有直接关系。MikroTest涂层测厚仪中G6,F6,G7,F7,S3,S5,S10和S20型主要用于测量钢铁基体上的非磁性涂镀层;Ni50和Ni100主要用于测量铜铝塑料基底上镀镍;NiFe50主要用于测量钢铁基体上的镀镍层。三、
MikroTest涂层测厚仪技术参数 型号 测量范围 读值精度± *小测量区直径mm
基体*小厚度mm 适用场合 Mikrotest6G 0-100um 1um或5%读值 20mm 0.5
钢、铁基体上电镀层、漆、搪瓷、塑料、橡胶层等 Mikrotest6F 0-1000um
3um或5%读值 30mm 0.5 Mikrotest6S3 0.2-3mm 5%读值 30mm 1.0 Mikrotest6S5
0.5-5mm 5%读值 50mm 1.0 Mikrotest6S10 2.5-10mm 5%读值 50mm 2.0
Mikrotest6S20 7.5-20mm 5%读值 100mm 7.0 Mikrotest6Ni50 0-50um
1um或5%读值 15mm 非铁基体上镀镍层 Mikrotest6Ni100 0-100um 1um或5%读值
15mm MikrotestNiFe50 0-50um 2um或8%读值 20mm 0.5 钢铁基体上电镀镍
Mikrotest7G 0-300um 2um或3%读值 20mm 0.5
钢、铁基体上电镀层、漆、搪瓷、塑料、橡胶层等 Mikrotest7F 0-1500um
5um或3%读值 30mm 0.5 Mikrotest7S5 0.5-5mm 4%读值 50mm 1.0 Mikrotest7S15
3.0-15mm 4%读值 100mm 7.0
注:表中钢铁基体均指未硬化钢铁(C15到C45)四、MikroTest涂层测厚仪使用过程中注意事项
推动指轮时,不要触动按钮; 尽量保证测量点与两支撑点在同一平面上;
在粗糙表面测量时,读数将偏大。要多次测量求取平均值;
测量柱体或圆形边缘时,一定要利用仪器测嘴的V型口;
测量含碳量高或经过热处理后的硬质钢上涂层时,测值会偏大;
基体厚度小于临界厚度时,测值会偏大;
在凸凹测量会对测值有影响,在凸面时测值偏大、凹面时测值偏小;五、
MikroTest涂层测厚仪的维护与保养保证测厚仪远离*磁铁或电磁铁,远离强磁场、强电场;
切勿猛烈碰撞
测厚仪使用完后指轮一定要反时针旋转到二分之一刻度以上的位置再放置在存放点;六、
MikroTest涂层测厚仪的维修针对转盘停不住:可调整卡位销;
针对转盘推不动:检查驱动发条、齿轮组;
针对测值不准:要用专用工具调整弹簧; 齿轮组卡位:清洗齿轮组;七、
MikroTest涂层测厚仪的符合标准DIN 50981,50982; ASTM
B499,E367,D1186,B530,G12; BS5411; DIN EN ISO 2178,2361 MiniTest 600
系列涂层测厚仪(更多介绍:德国epk涂层测厚仪)八、 MiniTest
600涂层测厚仪产品名录MiniTest 600
系列涂层测厚仪产品主要包括两种小类型:MiniTest 600B和MiniTest
600,每种小类都可分为F型、N型、FN型三种,因此600系列测厚仪共有6种机型供选择。600B型与600型的*大区别*是600B是基本型,没有
统计功能。九、 MiniTest
600涂层测厚仪的测量原理及应用F型测头是根据磁感应原理设计的,主要测量钢铁基体上的非磁性涂镀层。例如:铝、铬、铜、锌、涂料、橡胶等,也适用于合金和硬质钢。N型测头是根据电涡流原理设计的,主要测量非铁磁性金属和奥氏体不锈钢上的涂层。例如:铝、铜、铸锌件上的涂料、阳极氧化膜、陶瓷等。FN型测头是同时利用磁感应原理和电涡流原理设计的,一个测头*可完成F型和N型两种测头所能完成的测量。十、
MiniTest
600涂层测厚仪的测量中的相关注意事项测量前一定要在表面曲率半径、基体材料、厚度、测量面积都与被测样本相同的无涂层的底材上较零,才可以保证测量的精
确性; 每次测量之间间隔几秒钟以保证读数的准确性;
喷砂、喷丸表面上的涂层也可以测量,但要严格按照说明书的校准步骤进行校准;
不要用力拽或折测头线,以免线断;
严禁测量表面有酸、碱溶液或潮湿的产品,以免损坏测头;
测量时测头轴线一定要垂直于被测工作表面; 每次测量应有大于3秒的时间间隔。
十一、 MiniTest 600涂层测厚仪的技术参数 测量范围 F型 0-3000um N型
0-2000um FN型(两用型) 0-3000um(F),0-2000um(N) 允许误差
±2um或±2-4%读数 *小曲率半径 5mm(凸)、25mm(凹) *小测量面积 Φ20mm
*小基体厚度 0.5mm(F型)、50um(N型) 测量单位 Um-mils可选 显示
4位LED数字显示 校准方式
标准校准、一点校准、二点校准、基础校准(华丰公司内) 统计数据
平均值、标准偏差、读数个数、*大值、*小值 接口 RS-232(不适合B型) 电源
2节5号碱性电池 仪器尺寸 64mmX115mmX25mm 测头尺寸 Φ15mmX62mm 工作原理
涂层测厚仪采用电磁感应法测量涂层的厚度。位于部件表面的探头产生一个闭合的磁回路,随着探头与铁磁性材料间的距离的改变,该磁回路将不同程度的改变,引起磁阻及探头线圈电感的变化。利用这一原理可以精确地测量探头与铁磁性材料间的距离,即涂层厚度。

高斯计热卖中毫特斯拉计又称为高斯计,是测量物体于空间上一个点的静态或动态磁感应强度,
由霍尔传感器(精度更高可选择磁通门传感器).经过物体磁力线穿过产生电流电压,主设备上面显示磁感应强度,是根据霍尔效应制成的测量磁感应强度的仪器,它由霍尔探头和测量仪表构成。霍尔探头在磁场中因霍尔效应而产生霍尔电压,测出霍尔电压后根据霍尔电压公式和已知的霍尔系数可确定磁感应强度的大小。毫特斯拉计的读数以高斯或千高斯为单位·毫特斯拉计毫特斯拉计又称为高斯计,是测量物体于空间上一个点的静态或动态磁感应强度,
由霍尔传感器(精度更高可选择磁通门传感器).经过物体磁力线穿过产生电流电压,主设备上面显示磁感应强度.毫特斯拉计是根据霍尔效应制成的测量磁感应强度的仪器,它由霍尔探头和测量仪表构成。霍尔探头在磁场中因霍尔效应而产生霍尔电压,测出霍尔电压后根据霍尔电压公式和已知的霍尔系数可确定磁感应强度的大小。毫特斯拉计的读数以高斯或千高斯为单位。毫特斯拉计是用于测量和显示单位面积平均磁通密度或磁感应强度的精密仪器。原理毫特斯拉计是基于霍尔效应原理进行磁场测量的,采用霍尔传感器作为磁感应元件。用户可能会发现这样的问题,即使在同一个点上,使用不同型号的探头会产生不同的测量结果。这并非是测量的错误,而是由于霍尔传感器的尺寸不同以及装配的位置误差产生的结果。根据不同的需要,正确地选择毫特斯拉计和相应的霍尔探头尤为重要。本公司主营
不锈钢采水器,罐底焊缝真空检测盒,读数仪,八级空气微生物采样器,继电器综合测试仪,双波长扫描仪,涂层测厚仪,土壤粉碎机,钢化玻璃表面平整度测试仪,声音传感器,便携式电测水位计,网口流量计,腐蚀率仪,便携式划痕仪,凝固点测试仪,水质检测仪,在线氨气测试仪,涂层测厚仪,涂层测厚仪,土壤粉碎机,数显式温度计,气体采样泵,陶瓷抗冲击试验机,全自动结晶点测试仪,药物凝固点测试仪,干簧管测试仪,恒温水浴箱,汽油根转,气体采样泵,钢化玻璃测试仪,水质检测仪,PM2.5测试仪,可吸入颗粒物检测仪,高频热合机,应变控制三轴仪,牛奶体细胞检测仪,氦气浓度检测仪,土壤水分电导率测试仪,场强仪,采集箱,透色比测定仪,毛细吸水时间测定仪,氧化还原电位计
测振仪,一氧化碳二氧化碳检测仪,CO2分析仪,示波极谱仪,黏泥含量测试仪,汽车启动电源,自动电位滴定仪,便携式测温仪,氧化锆分析仪,干簧管测试仪,精密电导率仪,TOC水质分析仪,微电脑可塑性测定仪,风向站,全自动点样仪,土壤氧化还原电位计,数字测温仪,便携式总磷测试仪,腐蚀率仪,恒温水浴箱,余氯检测仪,自由膨胀率仪,离心杯,混凝土饱和蒸汽压装置,颗粒强度测试仪,高斯计,自动涂膜机,安全阀研磨工具,气象站,动觉方位仪,暗适应仪,气味采集器,雨量计,四合一气体分析仪,乳化液浓度计,溶解氧仪,温度测量仪,薄层铺板器,温度记录仪,老化仪,噪音检测仪,恒温恒湿箱,分体电阻率测试仪,初粘性和持粘性测试仪,红外二氧化碳分析仪,氢灯,动觉方位仪,恒温动物手术台,冷却风机,油脂酸价检测仪,粘数测定仪,菌落计数器,气象站,雨量计,凯氏定氮仪,荧光增白剂,公司秉承“顾客至上,锐意进取”的经营理念,坚持“客户##”的原则为广大客户提供优质的服务。欢迎惠顾!北京恒奥德仪器仪表有限公司联系人:小文
/温馨提示:看不到图片的产品可以来电咨询

发表评论

电子邮件地址不会被公开。 必填项已用*标注

相关文章

网站地图xml地图