超声波硬度计的原理

发布时间:17-02-20 14:59分类:技术文章
标签:超声波硬度计的原理,超声波硬度计
本章节在介绍超声波硬度计的原理及其应用,在此之前,大家是否想了解一下硬度计的起源呢?金属硬度测量*早起源于18世纪20年代,由雷奥姆尔提出并被应用到金属硬度检测的,此乃硬度计也。硬度是材料力学性能中很重要的一项指标,和强度一样,它们其实都是在考量材料受力与变形之间的关系。因此,传统的硬度测量手段,或者说,试验方法,都是与力值(也*是负荷)直接相关的,比如,常见的布、洛、维硬度计,包括韦伯斯特硬度计、巴氏硬度计,都是直接将力加载在材料表面,然后观察变形,只不过,有的关注的是水平方向的变形(布氏)、有的关注的是深度方向的变形(洛氏)、有的给予综合考虑(维氏)。当然,随着机电技术和光学技术的发展,以及为了应用的方便,于是又出现了电机加载、CCD观察压痕等等形式。但是,万变不离其宗,马甲再怎么换,这些传统的试验方式其实质还是一样,辅助技术的出现,并不代表着这些试验方法变得更*进了,而它们(布络维)的换算关系也仍然是基于统计数据。里氏硬度计则是完全不同的试验方法,它不再是直接的力与变形的关系,实际上,借助的是动量守恒原理。质量一定的一个球头,以已知的初始速度撞击材料表面,获得一个反弹速度,人们用这两个速度之比来表征硬度。这里,有个隐含的前提,即,被测材料的质量相对于球头来讲,应该要足够大,而且微观上讲,不能因撞击产生振动。所以,里氏在测量小工件、薄工件(包括薄壁管)是不合适的。大家可能觉得奇怪,不是要讲超声波硬度计吗?怎么扯那么远?我绕这一大圈的目的,是想帮助大家理解(或者说建立)一个概念:不同的试验方法之间,不存在谁更高级、谁更准确、谁更*进的问题,核心在于,针对具体应用,要关注其合理性与适用性。从前面绕的那一大圈,我们可以知道,传统的方式是直接加力、然后观察压痕。除了洛氏是看压痕深度之外,布氏值和维氏值其实是力值F和压痕面积d2的关系。这一点,务请记牢,后面对于你理解超声硬度计的合理性非常有帮助。探头中间是一根振动棒,振动棒的下端是一个维氏压头。开机时,振动棒产生超声振动,当然,这个振动你肉眼是观察不到的,但是,可以被固定在振动棒上的一组压电晶片感应到,并由此计算出一个振动频率。
这时候,让我们展开想象,把这根振动棒看做是一根弹簧,不断地被压缩、然后松开,也*是说,以一个固定的频率震荡着。当我们把这样一根“弹簧”的*,*是那个维氏压头,紧紧地压进材料表面,会出现什么情况呢?我们知道,材料有弹性模量,微观上,振动棒这个“弹簧”*会把震荡传递给材料的微观晶粒,于是这些晶粒也开始震荡,你同样可以想象,这是又一根“弹簧”在震荡。刚开始,这两根“弹簧”的震荡频率并不相同,但逐渐地,它们会趋于同步,也*是说两根弹簧”连在一起后,会产生共振,(当然,这个“逐渐地”的过程很快,也*澳门新葡萄京官网注册,一两秒钟的事),于是,振动棒上的另一组压电晶片监测到了这个共振的频率,这样,振动棒初始的频率和共振后的频率的变化量也*可以被计算出来了。我们又知道,材料硬度越高,受力后的压痕面积越小,硬度越低,压痕面积*越大。这时,我们来看看下面的公式:
式中,△f代表频率变化量,Eeff代表弹性模量,A代表压痕面积。△f=(Eeff,A),这个公式表示,△f与Eeff和A存在可计算的比例关系。而在前面讲过,硬度值其实也是与力F和压痕面积A存在可计算的比例关系,也*是图中的HV=F/A。维氏机产生的压痕本来*很小,而压痕边缘的判定是由人来观察的,难免出现错误。而振动棒的压痕*更小,但频率却可以借由电路的计算精确得到,于是,如果我们知道某种材料的弹性模量,又测得了频率,那我们完全可以借助换算关系用△f与Eeff来表示A、而不用去测量压痕直径。这样,如果力值事*设定(振动棒压紧到材料表面,靠的*是压紧弹簧——这是真的弹簧,而弹簧的压紧力是可以事*设定的,这*是超声波探头有不同型号的缘故,其型号的不同,*是取决于弹簧压紧力,有10N、20N,等等),那么,硬度值的公式完全可以转化成:HV=F/(△f,Eeff),你看,根本不用费心去观察压痕了、也不用担心“压痕边缘不清晰”所带来的误差了。但是且慢,如果只是这样的应用,还是显示不出超声测硬度的好处,因为,不同材料,其弹性模量必定有差异,你得*把弹性模量给测出来——除非你事*知道。
那么怎么办?正确的应用应该是这样的:一种材料,应事*做一个样块,*用台式机打出值,然后,用超声波硬度计也打一次值,根据台式机打出的值,对超声波硬度计进行标定,标定之后,只要是同种材料,*可以直接用超声波硬度计打值了。综上为超声波硬度计的原理及应用,如果您有什么疑问,可在我们爱仪器仪表官方网站咨询相关客服,我们会为您进行有效而详细的解答的。

除超声硬度计之外,另一种发展较快且自动化程度较高的新型便携式硬度计是里氏硬度计。它是基于非完全弹性碰撞原理.通过碰撞中的冲击能量损失确定硬度值的硬度计。由于里氏硬度值的大小取决于被试材料压痕中弹性变形功在全部变形功中所占的比例,而碰撞过程时问极快,使压痕产生过程极短,因此任何影响冲击体回弹速度,消耗冲击能量,使压痕产生不充分的因素都会对测量造成影响,使其在应用过程中的技木条件受到一定的限制。里氏硬度试样的技术条件主要包括试样的质量、表面粗糙度、厚度和几何形状等方面,与超声硬度计的对比情况见表1(表中里氏硬度计技术数据均针对标准D型测头,且测试方向为垂直向下)。里氏硬度测试和超声硬度测试都是动态的无损测试方法。当试样具有相当大的质量,尤其是大质量厚壁结构时,可以使里氏硬度计的优势充分发挥;但超声硬度计所基于的超声接触阻抗(UCI)方法的独到优势。使其具有更广泛的应用范围。

澳门新葡萄京官网注册 1

超生硬度计与里氏硬度计对比

洛氏硬度

里氏硬度计

用一个金刚石圆锥或经硬化的钢球压头,以10kgf的预载荷和60, 100, 或
150kgf的主试验力压入被测材料表面。

超声硬度计

表面洛氏硬度

试样的质量

依据设定的标尺,用一个金刚石圆锥或经硬化的钢球压头压入被测材料表面。表面洛氏测量应用的力值较小,产生的压痕较浅,多用于相对易碎和很薄的材料中。

试样质量越大,里氏硬度计硬度值就越可靠,其最小质量要求,高硬度试样3KG,低硬度试样1.5KG。若试样不满足要求,需通过耦合或压紧支撑的方法提高试样的惯量,对非密实试样要估算有效碰撞质量,计算质心和偏角,处理不当则会造成较大的误差。

预载荷为3kgf,主试验力为15, 30, 或45kgf。

对薄小件,复杂形状的工件,只需用不同的测头适配块,就可直接测量,避免了工装夹具的设计和测量值换算修正等步骤。

维氏硬度

试样的表面粗糙度

以1-120kgf的试验力,将相对面夹角为136°的方锥形金刚石压头压入被测材料表面。

冲击体冲击试样表面产生压痕的过程分为光整阶段和冲击压痕阶段两部分,表面粗糙度越大,光整阶段所消耗掉的冲击体动能也越大,引起测量值低于实际值,对高硬度试样影响较大。要求高硬度试样,Ra≤2um(▽6以上),低硬度试样Ra≤8um(▽4以上)。

压痕则应用显微镜或USB摄像头来进行视频观测及测量。

表面粗糙度越大,表面对谐振杆压头的约束力也越大,谐振杆频率上升,引起测量值偏低,对低硬度试样影响较大,但Ra≤12.5um(▽3以上)情况下影响不大。

显微维氏硬度

试样的厚度

通常以不超过1kgf的试验力,将相对面夹角为136°的方锥形金刚石压头压入被测材料表面。

里氏硬度试验对试验部位在试验方向上的厚度要求,不仅要防止被打穿,还要防止因形状原因而有支撑,无支撑或支撑方式不同,使试样在收到冲击力时发生弹性或塑性位置变化,要求厚度≥3mm

压痕则应用精密显微镜或高分辨率的USB摄像头来进行视频观测及测量。

要求厚度≥10倍压痕穿透深度。在1.2KG砝码负荷下,25-65HRC的钢件相应的压痕深度为14~7um左右,因此可适用于非常薄的材料。

600x的放大倍数是最常见的,1000x的放大倍数正愈加被广泛的应用。

试样的曲率半径

努氏硬度

里氏硬度值与参与压痕形成的材料体积大小有着密切的关系,要求对凸曲面试样R≥10mm,凹曲面试验R≥15mm

通常以不超过1kgf的试验力,将细长的金刚石椎体压入被测材料表面。

测量值与压痕接触面积的投影有关,且因在加载情况下测量,受曲率半径影响不大。

压痕则应用精密显微镜或高分辨率的USB摄像头来进行视频观测及测量。

超声波硬度计,里氏硬度计

600x的放大倍数是最常见的。

性能比较

布氏硬度

传统的硬度试验仪器,布氏、洛氏、维氏硬度试验讥。都是将特定压头以一定的静载荷压入被试材料表面,在其表面产生压痕,再用机械或光学的方法直接测量此压痕的大小,来评价被试材料的硬度,表征材料硬度值的压痕应是加载时材料的仝部变形,但由于硬度值是在卸载的情况下读取的,被测的压痕只是残余的塑性变形,变形中的弹性恢复被忽略了。另一方面,硬度值是在假定压痕是压头真实几何形状反映的前提下确定的,而宴际上残余的压痕与压头形状并下完全相符。以上两个因素对测量值的影响取决于被试材料的弹性模量和屈服极限。超声硬度试验的实质是通过谐振频率增量对压痕间接估值,测量是在测头与被试材料接触的加载情况下进行的,因此,可以避免传统硬度试验中住痕弹性恢复和压痕变形的问题。

以1 – 3000kgf的试验力,将直径分别为1, 2.5,
5或10mm的硬质合金球或碳化钢球压入被测材料表面。

相对大的压痕则应用显微镜或USB摄像头来进行视频观测及测量。

里氏硬度

便携式硬度测试。它是用一定质量的装有碳化钨球头的冲击体,在一定弹簧弹力的作用下冲击试件表面,这种冲击力使被测材料表面产生了塑性变形,形成了一个压痕,随之冲击体失去了原有的速度。

因此,被测材料越柔软,冲击体在回弹过程中失去的速度就越多。里氏硬度可以应用于多种零件,需要遵守的测试要求也很少。

超声波硬度测试

便携式硬度测试。一个维氏形状的金刚石压头固定在一个震荡棒上,以一定的力值加于被测材料表面,然后根据超音波振动,分析它的阻尼效应,从而测量材料的硬度值。

超声波硬度测试多用于较小,较薄而无法用回弹硬度试验仪所测试的零件。

邵氏硬度

便携式硬度测试。邵氏硬度是用具有一定形状的钢制压针,在试验力作用下垂直压入试样表面﹐当压足表面与试样表面完全贴合时﹐压针尖端面相对压足平面有一定的伸出长度,以该长度值的大小来表示邵氏硬度的大小。

压针与线性测量设备相连,测量的压痕深度值随之通过机械或电子系统转换为邵氏硬度值。压痕越深,材料越软。

IRHD

根据球压头压入被测材料的深度,来测量弹性材料或橡胶抵抗压头压入的性能。在1、2.5或5mm球压头上施加一个初始接触力,将压入深度设置为零。然后增加力值到指定的总负荷,这时测量材料压入的深度值。IRHD值与压头压入的深度有关系。该测量方法通常被应用于测试较小的部件和O型环。

韦氏硬度

便携式硬度测试。

把被测材料放置在工作台和穿透器之间。然后再向把手处施力直到感觉到已经触到了底,这时千分表便有了读数。韦氏硬度有不同种类的压头,针对不同材料有不同的力值设定。

不常用的硬度标尺

以下的硬度测试方式是不常用的或是已经被其他方法所代替的:

HM 马顿斯硬度

H 球压痕硬度

HVT 改进的维氏硬度测试方法,深度测量

HBT 改进的布氏硬度测试方法,深度测量

BARCOL – 压痕硬度

以上就是贤集网小编为您介绍常见硬度测试大盘点的相关内容,如果您有什么想法,欢迎到下方评论留言。

发表评论

电子邮件地址不会被公开。 必填项已用*标注

相关文章

网站地图xml地图